
 Cour tesy of Cra ig Jones
(714) 955-4025

info@chiefs impl i c i t yof f i cer.com

Java Coding Standard Suggestions
Updated 21-Dec-2011

Key Principles
Coding Standards
 Coding standards are subject to discussion and

reexamination at any time. Agreed-upon coding
standards are necessary in an Agile shop, where there
is collective code ownership and constant refactoring.
So, the standards must be adopted voluntarily by the
whole team.[BECK00 p. 61]

Human Audience
 99% of the time, it’s more important to write code so

that another programmer can read and understand it,
than to write code so the computer can understand it.

 When writing code, work hard to avoid making the
reader perform mental mappings. A five-minute
investment up front will pay off 10 times over down
the road. [MARTIN09 p. 25]

D.R.Y. – Don’t Repeat Yourself
 Duplicate code is bugaboo #1 in almost every book

on the subject of clean code [MARTIN09 p.289]
[HUNT00 p. 26] [FOWLER99 p. 76].

 Martin says, every time you see duplicate code it’s a
missed opportunity for abstraction.

Fix Broken Windows
 Bad code tempts the mess to grow. Any code you

modify should end up cleaner than you found it.
[MARTIN09 p. 8]

 If there is insufficient time to fix it properly, then
“board it up” – stub it out, change it to display “Not
Implemented,” or do something else to show that you
are on top of the situation [HUNT00 p. 5]

Don’t Speculate
 Aka. “No Spec-Gen” (Speculative Generality)

[FOWLER99 p.83]
 Aka. YAGNI (“You aren’t gonna need it”)
 Aka. “Do the simplest thing that could possibly

work” [BECK00 p.103]
 And no speculative performance tuning!

Single Responsibility Principle
 aka. Orthogonality [HUNT00 p. 34]
 Use very small classes – every class should have one

and only responsibility (i.e. one reason to change).
[MARTIN09 p. 138.]

 Related to the High Cohesion/Low Coupling
principle [MARTIN09 p.140]

The Law of Demeter
 “A module should not know about the innards of the

objects it manipulates.” Martin points out, however,
that not all Java classes are truly “objects.”
Sometimes they are simple data structures (e.g. beans
and DTOs), and the Law of Demeter does not apply
then. [MARTIN09 p. 97] [HUNT00 p. 138]

Test-Driven-Development
 “Unit tests are the water that keeps the potter’s clay

pliable.” ~ Llewellyn Falco
 Law #1: Write no production code without a failing

unit test first; Law #2: Write just enough unit test to
fail; Law #3: Only write enough production code to
make the test pass. [MARTIN09 p. 122]

Principle of Least Surprise
 Don’t leave behaviors unimplemented that another

programmer could reasonably expect.

“One difference between a smart programmer
and a professional programmer is that the
professional programmer understands that
clarity is king. Professionals use their powers
for good and write code that others can
understand.” ~ Robert (Uncle Bob) Martin

References
[BECK00] – Beck, Kent; “Extreme Programming
Explained: Embrace Change,” 2000, Addison Wesley

[FOWLER99] – Fowler, Martin; “Refactoring: Improving
the Design of Existing Code,” 1999, Addison Wesley

[HUNT00] – Hunt, Andrew & Thomas, Dave; “The
Pragmatic Programmer: From Journeyman to Master,”
2000, Addison Wesley

[MARTIN09] – Martin, Robert; “Clean Code: A Handbook
of Agile Software Craftsmanship,” 2009, Prentice Hall

© 2009-2011, Craig L. Jones. (Portions © ThotSpots, Inc. Used with Permission.)

Naming
 Use pronounceable, meaningful names [MARTIN09

p. 17] that are intention-revealing
 Use fully spelled-out words, not abbreviations. Rare

exceptions are well-known business domain
acronyms (e.g. APR for annual-percentage-rate,
BOM for bill-of-materials), and well-known
programming idioms (e.g. FIFO for first-in-first-out,
Dir for directory, Exe for executable). If you gave
your code to another programmer to read out loud,
cold, could he do so without stumbling?

 Note: When camel-casing an acronym, the JavaBean
specification says to treat it like a word
(newAprConforming, not newAPRConforming).

Basic Naming Conventions
javaCase Local variables, class fields,

method names,
arguments/parameters

CamelCase Classes and Interfaces – Do
not name interfaces with an
“I” prefix.

ALL_CAPS Constants (final static)
getXxxx() and
setXxxx()

Getters start with “get”,
Setters start with “set”

findXxx(),
determineXxx(),
addXxx()

If it’s not a getter or a setter,
then use another word
besides “get” or “set”

isXxxx() Boolean getters start with
“is” (not “getIs”, and not
“are” even if that would be
proper English)

e Caught exceptions are
always just “e”

Note: There are other, well-defined standards not
mentioned here. For example, no one ever argues about
how to make up a Java package name.

Functions
 One method should “do one thing” (and, by the way,

error handling is considered one thing) [MARTIN09
p. 35 & 46]

 Favor class fields over method arguments
[MARTIN09 p. 40]

 No side-effects [MARTIN09 p. 44]
 Do not mix commands and queries in the same

method [MARTIN09 p. 45]
 Never return null (use a Null Object instead, e.g.

Map.EMPTY_MAP)
 Do not return error codes. Throw exceptions.

On Removing Duplication
 Exactly repeated code can usually be fixed with

Extract Method, or Extract Class.
 Repeated switch-statement and if-then-else chains

can usually be fixed using polymorphism.
 Similar algorithms, with subtle differences in details,

can usually be addressed with the Template Method
and Strategy patterns.

Formatting
 It’s vital that the code is uniformly indented so that

statements within the same scope are aligned. (“[At]
Bell Labs … [our] findings suggested that consistent
indentation style was one of the most statistically
significant indicators of low bug density.” ~ James
Coplien) [MARTIN09 p. xxii].

 Other formatting conventions [e.g. MARTIN p. 75-
90] are useful, but of much less concern.

 Use your IDE’s auto-formatting tools early and often
(with the default settings), but don’t reformat code
that is already formatted well enough.

 When committing format changes to version control,
try hard to commit them separately from significant
code changes.

Objects vs. Data Structures
Data Structures
 e.g. Beans and DTOs
 No business logic, just public fields (or getter/setter

methods if it must be a JavaBean)
 Law of Demeter does not apply

True Objects
 Hide the implementation
 Law of Demeter applies (avoid feature-envy, an

indication that the classes aren’t small enough).

Documentation
The one and only purpose to write documentation is if it
enhances communication.

Permanent Documentation (maintained)
 Public interface APIs

Temporary Documentation (throw-away
worksheets, as needed)

 Use-cases
 UML diagrams
 User Stories (“a contract for further discussion”)
 Web flow wireframes

© 2009-2011, Craig L. Jones. (Portions © ThotSpots, Inc. Used with Permission.)

Commenting
 Avoid comments. (Explain yourself in the code itself

as much as possible, and avoid the need for
comments in the first place.) Comments are hard to
maintain when the code is constantly changing and
evolving.

 Prefer unit tests to documentation examples. A good
unit test that serves as “executable documentation” is
the picture that’s worth a 1000 words.

 Comments should amplify – don’t just repeat what’s
obvious by reading the code

Good Comments
[MARTIN09 p. 55]

Bad Comments
[MARTIN09 p. 59]

 Copyrights and other
required legalities

 Explanations of
intent, clarifications,
amplifications, and
other truly
informative
comments

 Warnings of
consequences

 JavaDocs in pubic
APIs

 TODO

 Mumbling,
redundancies, and
stating the obvious

 Misleading comments
(e.g. as often results
from copy & paste
errors)

 @author, change history,
etc. – Let the version
control system keep
track

 “End comments”
(closing-brace
comments) – indicates
that the code is too
complicated, so just
break it up

 Commented-out code –
Let the version control
system keep track

 HTML within JavaDoc –
Most people read the
JavaDocs directly out of
the source and the tags
just get in the way

 Comments in the wrong
place, too much
information, unobvious
connections, etc.

 Function headers,
section separators, and
other noise

 JavaDocs in non-public
code

 FIXME & XXX – use
these temporarily to
remind yourself of
things to be fixed, but
work quickly to remove
them

Unit Tests
 Test code should be even cleaner code than the code

being tested
 Single concept per test (which often means one assert

per test, but not always)
 Evolve a domain-specific language for the testing.
 Use the “given-when-then” pattern for the DSL

where applicable (i.e. private methods with names
that start with “given”, “when”, “then”) . Note:
This is a variation of the “build-operate-check”
pattern.

Error Handling
 Throw exceptions (not return codes)
 Use unchecked exceptions (extend

RuntimeException) – Using checked exceptions
violates the Open/Closed Principle.

 Provide context with exceptions

Databases
Table Schema
 Do not overload fields. For example, a status field

that indicates if a record has been soft-deleted should
not be used to indicate any other kind of status. In
fact, a field name of just "status" is unacceptable. It
should be more specific, e.g. "record_status",
"password_status", "registration_status".

 Tables always have a long integer, auto-incremented,
PK that's the same name as the table with an _id
suffix.

 All table and field names are lower case with
underscores (casing matters in the Linux version of
MySQL)

Groovy-Specific
Duck Typing (Def)
 Prefer explicit typing over duck typing (because your

IDE can’t help you otherwise), except…
 Closure fields are always “Def” (e.g. in a Grails

controller)

© 2009-2011, Craig L. Jones. (Portions © ThotSpots, Inc. Used with Permission.)

Obsolete Conventions & Practices
The following specific standards are no longer considered worthy:

Old New Why (Not)

Keeping names short

usrAcct

Spelled-out, English-like, meaningful
names

newlyRegisteredUserAccount

It’s more important to save the reader’s
time than the writer’s time. When
names are spelled out, the code reads
like English prose. The reader is not
burdened with having to transform
mental mappings in order to read the
code.

Hungarian notation or other
“encodings” included in element names

String strCount =
intCount.toString();

Intention-revealing names

String iconBadge =
newItemCount.toString();

Modern IDEs can tell you the type of a
variable just by hovering over it, so use
the variable names to show why the
variable exists, rather than how it’s
composed.

I, j, k, and count as for-loop index
names

Intention-revealing names

sourceIndex,
lastUsedBufferPosition

Also, nested loops are too complicated.
Try extracting the inner loop to its own
method.

Function parameters names that begin
with “a” or “an”

consolidate(Account
anAccount);

Just the name (with an indication of
why it’s being passed in)

consolidate(Account
accountToDrop);

Using @author comments
Just let the version control system keep
track. (Note: See the SVN BLAME
command in Subversion.)

Endline comments on variable
declaration lines.

Account account; // the
account to be merged-in and
then dropped

Intention-revealing names

Account
accountToMergeThenDrop;

“Noisy” comments such as pro-forma
documentation (function headers, etc.)

It's always better to use descriptive
names for classes, methods, fields,
variables and parameters than to
document them.

Documentation has a habit of getting
misplaced and going out of date. It’s
way better to let the code speak for
itself.

Comment-out old code that might still
be useful

Delete all unused code Let the version control system keep
track and keep the code uncluttered

Fields should always be declared
private (and automatically create
getters and setters for them)

Only do that when the object is
required to conform to JavaBean
standards (because a framework
requires it); otherwise just use public
fields.

Rely on an automated refactoring tool
to generate a getter and/or setter later
if/when it's needed

Automatically writing code in
interface/impl pairs, just in case you
decide later that you need to swap in a
second implementation.

Writing just a single class and relying
on an automated refactoring tool to
extract the interface later if/when it's
needed.

Lots of inheritance Less inheritance and more
aggregation/composition and
delegation

Super classes that can be instantiated. Super classes are always abstract.
Only the "leaf nodes" of an object
hierarchy can be instantiated.

Configuration data in external files
(.xml, .properties)

Configuration data in java source
(where the refactoring tools can find
them)

© 2009-2011, Craig L. Jones. (Portions © ThotSpots, Inc. Used with Permission.)

